Title: A polycation-modified nanofillers tailored polymer electrolytes fiber for versatile biomechanical energy harvesting and full-range personal healthcare sensing
Authors: Li, Z 
Xu, B 
Han, J 
Huang, J 
Fu, H
Issue Date: 2021
Source: Advanced functional materials, 2021, Early View, 2106731, https://doi.org/10.1002/adfm.202106731
Abstract: The emergence of fibrous energy harvesters and self-powered sensors gives birth to functional wearable electronics. However, low power outputs, poor sensing abilities, and limited material selections have greatly restricted their developments. Herein, novel polycation-modified carbon dots (PCDs) tailored PCDs/polyvinyl alcohol nanocomposite polymer electrolytes (NPEs) are prepared and used as dominating triboelectric materials to construct a new NPEs-based fiber triboelectric nanogenerator (NPE-TENG) for the first time. The filling of PCDs endows NPEs with enhanced ionic conductivity. The developed NPE-TENG can respond to different mechanical stimuli with excellent flexibility and deliver a high power density of 265.8 µW m−1. Self-powered wearable sensor and smart glove based on NPE-TENG are further developed, which can achieve skin-level tactile sensing and joint-related activities monitoring in a rapid, real-time, and noninvasive way. As a sustainable power source, the NPE-TENG can drive small electronics and light up hundreds of light-emitting diodes. This study not only renders new insights into the development of triboelectric materials for fiber-based TENG but also provides a direction for potential applications of fibrous biomechanical energy harvesters and self-powered sensors in wearable electronics, personal healthcare monitoring, and human–machine interactions.
Keywords: Fibers
Polymer electrolytes
Self-powered wearable sensors
Triboelectric nanogenerators
Publisher: Wiley-VCH
Journal: Advanced functional materials 
ISSN: 1616-301X
EISSN: 1616-3028
DOI: 10.1002/adfm.202106731
Appears in Collections:Journal/Magazine Article

Access
View full-text via PolyU eLinks SFX Query
Show full item record

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.